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Abstract The transport and kinetics of potential elec-
trolytes (such as weak organic acids) at stationary and
rotating electrodes have been examined in detail. A co-
herent mathematical analysis enabling the normalised
current response to be evaluated has been developed,
and various rate limiting scenarios have been identi®ed
and examined.
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Introduction

Attention has been focused in recent years on extend-
ing the applicability of electrochemical measurement
techniques to examine systems of real chemical interest.
In this paper we discuss how well-established electro-
chemical methods [1] such as potential step chrono-
amperometry (PSCA) and rotating disc voltammetry
(RDV) may be used to obtain quantitative information
on the proton transfer/reprotonation kinetics of weak

or potential1 electrolytes in non-aqueous solutions.
Solid kinetic data for electrochemical reactions in
aprotic solvents are not readily available. Acquisition
of the latter kinetic data is useful since the rate con-
stants so derived may be used to obtain quantitative
estimates of the equilibrium acidities of these materials.
Equilibrium acidities (pKa values) are usually deter-
mined via methods such as spectrophotometry [2],
conductivity [3, 4] or potentiometry [5]. Dynamic elec-
trochemical techniques such as PSCA or RDV have
been less frequently used, although the classical work
of Albery [6, 7] and the more recent work reported by
Sawyer and co-workers [8] should be noted.

In the present paper we give a uni®ed and compre-
hensive theoretical analysis of the transport and kinetics
of weak acid dissociation near the surface of an electrode
and indicate how this analysis may be used to extract
useful kinetic information on proton transfer events in a
thin reaction layer adjacent to the electrode surface.
Although aspects of this analysis have been published
previously by other workers, that analysis has been in-
complete [9] (in many cases, only some ®nal results have
been quoted and not derived), and in some respects
certain key theoretical results pertaining to the weak
acid dissociation problem quoted in the literature have
contained ambiguities [10] and errors.

The early work of Albery [6] and Albery and Bell [11]
indicated that dynamic electrochemical methods (such as
RDV) could beusefully employed to obtain quantitative
kinetic information of the proton transfer kinetics of
weak acids in aqueous solutions. However, the potential
a�orded by such methods has not been extensively
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1We adopt the terminology suggested by Bockris and Reddy in
their classic monograph Modern Electrochemistry; they proposed
that electrolytes can be classi®ed as potential (e.g. acetic acid)
which, in the pure state, consist of uncharged molecules, and true
electrolytes (e.g. sodium chloride) which, in the pure state, consist
of ions. This de®nition is more general than the more traditional
classi®cation into weak and strong electrolytes which is made on
the basis of their behaviour in one particular solvent such as water



recognised by the research community, and, to the au-
thors' knowledge, dynamic electrochemicalmethods have
not yet been employed to examine proton transfer kinetics
of potential electrolytes in non-aqueous solutions.

Analysis of the proton transfer kinetics
of electroinactive potential electrolytes
via amperometric detection

Many potential electrolytes such as, for example, acetic
acid, are electroinactive and therefore do not give rise
directly to a current response when monitored ampero-
metrically. Instead, the proton transfer kinetics may be
monitored by measuring the reaction ¯ux due to the
electroreduction of protons (to form molecular hydro-
gen) generated via pre-dissociation of the acid at a de-
tector electrode surface. The latter reaction sequence is
designated as a CE mechanism:

HA) * H� �Aÿ C

H� � eÿ ����! 1=2H2 E

The thermodynamics of the dissociation is governed by
the acid dissociation constant KA, which is in turn re-
lated to the proton transfer/reprotonation kinetics via
KA � k1=kÿ1, where k1 is the unimolecular rate constant
for proton transfer and kÿ1 is the bimolecular recombi-
nation rate constant.

It is useful to consider the local geometry near an
electrode surface during the occurrence of a CE process.
We present a schematic representation of the latter ge-
ometry in Fig. 1. We de®ne two characteristic regions: a
di�usion layer of thickness d and a very thin reaction
layer of thickness l. The dissociation equilibrium in-

volving the weak acid species HA will be in balance
within the di�usion layer. However, in the reaction layer
close to the detector electrode surface there will be more
HA dissociating than H� and Aÿ recombining, due to
the fact that H� is being removed at the electrode sur-
face owing to the occurrence of interfacial electron
transfer processes.

We can make some further observations. In the so-
lution outside the reaction layer we can assume that the
concentration of acid is considerably greater than the
proton concentration, since the acid is weak and the acid
dissociation constant KA is small. We also can experi-
mentally ensure that a salt MA (where M� denotes an
electrochemically inert cation) is present in large excess
in the solution. In our experimental studies we ensured
that [Aÿ� � 20 [HA]. This simpli®es data analysis con-
siderably. The situation near the interface becomes
considerably more complicated if excess salt is not
present in the solution.

In recent work reported by Osteryoung and co-
workers [12±15] it has been shown that the reduction
current of slightly dissociated weak acids depends
strongly on the concentration of supporting electrolyte.
The steady state current recorded at Pt ultra-micro-
electrodes in the absence of supporting electrolyte ex-
ceeds that with excess supporting electrolyte by a factor
of two. Also, Osteryoung and co-workers [12] showed,
on the basis of a fairly simple theoretical model, that the
shape of the concentration pro®le of the anion in the
interfacial region depends markedly on the concentra-
tion of the supporting electrolyte present. The surface
concentration of the anion is zero in the complete ab-
sence of supporting electrolyte, and approaches its bulk
value with increasing concentration of supporting elec-
trolyte. The latter conclusion was also predicted by

Fig. 1 Schematic representa-
tion of reaction/di�usion pro-
cesses describing weak acid
dissociation near the surface of
a rotating disc electrode. The
di�usion layer and reaction
layer are both illustrated but are
not drawn to scale
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Albery [6] a number of years before, using a somewhat
more complex approach. Oldham [16] in a recent paper
has also addressed this problem of di�usion/migration
coupled with a homogeneous chemical reaction from a
somewhat more general and comprehensive viewpoint.
Hence in our work we have speci®cally chosen experi-
mental conditions such that the concentration of the
anion does not vary appreciably with distance in the
interfacial region, and consequently electromigration
e�ects can be neglected. Consequently the transport and
kinetics are well described in terms of relatively simple
reaction/di�usion equations (whether steady state or
time dependent).

CE mechanisms under transient and steady state
conditions: re-evaluation and synthesis

Introduction

In this section we examine the pertinent reaction/di�u-
sion equations describing a general CE process and in-
dicate how the latter equations may be solved rigorously
using the technique of non-dimensional variables and
Laplace transformation. We have used such general
methods in previous work published on the modelling of
amperometric chemical sensors utilising electronically
conducting polymer materials [17±19]. This type of
general analysis has also been recently developed by
Bartlett and Eastwick-Field [20] in the context of ECE
mechanisms. We shall present an analysis of two im-
portant electrochemical techniques which have been
adopted in our current experimental programme. The
®rst is the transient technique of PSCA. The second is a
steady state method, RDV.

In general terms the CE process may be described in
the following manner:

A) *
k1

kÿ1
B C step

B) *
�neÿ

P E step

where we assume that the preceding chemical reaction is
®rst order in the forward and reverse direction and that
the equilibrium constant K for the reaction is given by
K � k1=kÿ1 � b=a. We assume for simplicity that the
electron transfer step is fast and can be described in
terms of the Nernst equation. Note we assume that
species A is electroinactive and species B is electroactive.
It is also possible to consider the situation of slow
electron transfer (in this case the latter is described in
terms of the Butler-Volmer equation), but this results in
an unnecessary complication. Since the electron transfer
kinetics are fast, we can assume that the observed cur-
rent is entirely governed by the chemical reaction and
di�usion of the reactants.

It has been established that the net behaviour of the
CE reaction can be quanti®ed in terms of a parameter k

and the equilibrium constant K. The quantity k has been
termed the kinetic competition parameter by Saveant
[21]. The latter parameter compares homogeneous ki-
netics and di�usion. In fact one can readily show that���

k
p � d=l, where d denotes the di�usion layer thickness
and l represents the reaction layer thickness. Hence the
larger the value of the competition parameter the more
rapid are the kinetics of the homogeneous chemical re-
action compared with di�usion.

This competition parameter is de®ned di�erently ac-
cording to the type of electrochemical technique being
used. We show in Table 1 the various de®nitions of k
corresponding to the most common techniques of RDV,
PSCA and linear sweep voltammetry (LSV). In the latter
table we set k � k1 � kÿ1, d denotes the thickness of the
di�usion layer, D is the di�usion coe�cient of the re-
actant, h represents the measurement time in the po-
tential step chronoamperometric experiment and m
denotes the potential sweep rate.

Potential step chronoamperometry

De®nition of the boundary value problem

An approximate theoretical analysis of the current re-
sponse to a potential step perturbation has been pro-
vided by Koutecky and Brdicka [22] and by Delahay and
Oka [23]. Here we provide a detailed and more rigorous
derivation. We do this because such an analysis is not
readily available in the literature.

The pertinent reaction di�usion equations are:

oa
ot
� D

o2a
ox2
ÿ k1a� kÿ1b

ob
ot
� D

o2b
ox2
� k1aÿ kÿ1b

�1�

where we have assumed that a�x; t� and b�x; t� represent
the concentrations of species A and B, respectively, k1
and kÿ1 denote the ®rst-order rate constants for the
homogeneous chemical reaction, and we have also as-
sumed that the di�usion coe�cients of species A and B
are equal and are given by the common value D. This
latter restriction can be modi®ed to consider non-equal
values for the di�usion coe�cients. However, the in-
crease in complexity inherent in this procedure is not
warranted and we shall not pursue such a development
here. Note also that x and t represent the distance and
time variables, respectively.

Table 1 Values adopted for the kinetic competition parameter k

Technique Kinetic competition parameter k

RDV k � kd2

D
PSCA k � k#

LSV k � RT
nF

k
m

� �
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Since the equilibrium constant K � k1=kÿ1, then we
write that k1 � kÿ1K and so Eq. 1 can be written as:

oa
ot
� D

o2a
ox2
ÿ kÿ1 Kaÿ b� �

ob
ot
� D

o2b
ox2
� kÿ1 Kaÿ b� �

�2�

where bÿ Ka represents a measure of the departure
from equilibrium in the reaction layer next to the elec-
trode surface. Note that the reaction di�usion equations
expressed in Eq. 2 are coupled since they both include the
concentration variables a and b.

To solve the latter expressions we must introduce the
initial and boundary conditions which are mathematical
statements describing the speci®c experiment being
considered. In the context of potential step chrono-
amperometry we state:

t � 0 x � 0 a � a1 b � b1 K � b
a

t > 0 x!1 b! b1 a! a1
b
a
! K

t > 0 x � 0 b � 0 D
oa
ox

� �
0

� 0

�3�

The ®rst statement in Eq. 3 de®nes the initial condition
before the experiment is turned on. The concentrations of
A andB are given by their bulk equilibrium values a1 and
b1. The second statement in Eq. 3 represents the situation
very far from the electrode surface when the experiment is
in operation. Here the concentration terms attain their
bulk values as the distance from the electrode surface
becomes great. It is only in regions of space close to the
electrode surface that there will be signi®cant deviations
in reactant species concentrations from those predicted
from consideration of the A/B equilibrium brought about
by the electrochemical reaction of species B. The ®nal
statement in Eq. 3 pertains to the situation at the elec-
trode surface. Here we state that species B reacts at a
di�usion controlled rate and so its surface concentration
is zero (i.e. it reacts as soon as it reaches the electrode
surface) and that species A does not react directly at the
electrode surface since it is assumed to be electroinactive.
It should be noted, however, that the ®nal condition
presented in Eq. 3 will not be valid when the dissociation
rate is fast enough such that the concentration of species
A drops to zero. This will not happen if the electrolyte is
weak, since in this case the dissociation rate constant will
be much smaller than the recombination rate constant. In
the present paper we only consider the situation of weak
electrolytes and so the ®nal boundary condition pre-
sented in Eq. 3 is valid.

Finally, to complete the de®nition of the problem we
specify an expression for the current response which is a
mathematical statement of the Faraday law of electro-
lysis:

i � nFAD
ob
ox

� �
0

�4�

We now must solve the system of equations speci®ed in
Eq. 2 subject to the initial and boundary conditions
outlined in Eq. 3. Once this is done we use Eq. 4 to
evaluate the current response.

Transformation to normalised variables

The most e�ective way to proceed is to express the
boundary value problem in terms of non-dimensional
variables. This results in a considerable simpli®cation in
the algebraic manipulation and is also mathematically
more elegant. To do this we de®ne:

u � a
cR

v � b
cR

cR � a1 � b1

v � x�������
D#
p s � t

#
k � k# k � k1 � kÿ1

�5�

where # represents the total measurement time and k is
the competition parameter de®ned in Table 1. Substi-
tuting Eq. 5 into Eq. 2 we obtain, after some manipu-
lation, the following equation:

ou
os
� o2u

ov2
� k
1� K

vÿ Ku� � �6�

Using a similar method of analysis we can show that:

ov
os
� o2v

ov2
ÿ k
1� K

vÿ Ku� � �7�

Hence Eqs. 6 and 7 represent the de®ning reaction/dif-
fusion equations cast in non-dimensional form. We note
that these expressions are still rather complex since they
involve the non-dimensional concentration variables u
and v. To make matters simpler we introduce two new
non-dimensional variables f and g which we de®ne as:

f � u� v

g � vÿ Ku �8�
If the latter quantities are substituted into Eqs. 6 and 7 a
more mathematically transparent set of di�erential
equations is obtained. As outlined in Appendix A, we
note that the system of reaction/di�usion equations re-
duces to the following simple expressions:

of
os
� o2f

ov2

og
os
� o2g

ov2
ÿ k g

�9�

To complete the transformation of the boundary value
problem we need to transform the initial and boundary
conditions presented in Eq. 3. We ®rst consider the ini-
tial condition. We can readily show that the transformed
initial condition is given by:

s � 0 v � 0 : f � 1 g � 0 �10�
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Taking the boundary condition very far from the elec-
trode surface we readily show that:

s > 0 v!1 : f! 1 g! 0 �11�
Finally we consider the boundary condition at the
electrode surface. We can show that:

s > 0 v � 0 : g v � 0� � � ÿKf v � 0� �
og
ov

� �
0

� of
ov

� �
0

�12�

We ®nally require an expression for the normalised
current response. This is given by:

w � ov
ov

� �
0

� og
ov

� �
0

�13�

where:

w � i
���
#
p

nFAcR

����
D
p �14�

Solution of the reaction/di�usion equations
in terms of the Laplace transformation

We are now in a position to solve the problem using the
technique of Laplace transformation [24]. Turning ®rst
to the f equation we have on application of the de®ni-
tion of the Laplace transform:

d2�f�v; p�
dv2

ÿ p�f�v; p� � f�v; s � 0� � 0 �15�

Since we recall that f�v; s � 0� � 1, then Eq. 15 reduces
to:

d2�f
dv2
ÿ p�f� 1 � 0 �16�

Note that Eq. 16 is an ordinary di�erential equation
independent of the time and containing only the vari-
ables v and the Laplace parameter p. Looking at the g
equation we again apply the Laplace transformation to
show that:

d2�g
dv2
ÿ p�g� g�v; s � 0� ÿ k�g � 0 �17�

and we note that g�v; s � 0� � 0. Then Eq. 17 takes the
form:

d2�g
dv2
ÿ p � k� � �g � 0 �18�

Again this is a rather simple ordinary di�erential equa-
tion. The solution of the latter equation is given by:

�g v; p� � � A exp�ÿ
�����������
p � k

p
v� � B exp�

�����������
p � k

p
v� �19�

where A and B are constants to be determined from the
boundary conditions set for the problem. Now physi-

cally �g must be bounded as v!1. Hence we note that
B � 0. Also we note that when v � 0; �g � �g v � 0� �
and so substituting this result into Eq. 19 we note that
A � �g v � 0� �. Consequently the formal solution of Eq.
18 is:

�g v; p� � � �g v � 0� � exp�ÿ
�����������
p � k

p
v� �20�

We now examine Eq. 16. The solution to this equation is
given by:

�f v; p� � � 1

p
� A0 exp�ÿ ���

p
p

v� � B0 exp� ���pp v� �21�

where A0 and B0 are constants to be determined. Again
since the solution �f must be bounded as v!1 we state
that B0 � 0. When v � 0; �f � �f v � 0� � and so from
Eq. 21 we note that �f v � 0� � � 1=p � A0; hence
A0 � �f v � 0� � ÿ 1=p. Substituting the latter result into
Eq. 21 we note that the formal solution to Eq. 16 is:

�f v; p� � � 1

p
� �f v � 0� � ÿ 1

p

� �
exp�ÿ ���

p
p

v� �22�

We now use Eqs. 20 and 22 to obtain an expression for
the current response in Laplace space. We ®rstly di�er-
entiate Eq. 20 to obtain:

d�g
dv

� �
0

� ÿ
�����������
p � k

p
�g v � 0� � �23�

and so the normalised current response in Laplace space
is given by:

�w � d�g
dv

� �
0

� ÿ
�����������
p � k

p
�g v � 0� � �24�

and our problem reduces to evaluating the quantity
�g v � 0� �. We recall from Eq. 12 that in Laplace space:

�g v � 0� � � ÿK �f v � 0� � �25�
We also recall from the last relationship expressed in Eq.
12 that:

d�g
dv

� �
0

� d �f
dv

� �
0

�26�

We therefore use the relationships presented in Eqs. 25
and 26 to evaluate �g v � 0� � and hence to evaluate the
Laplace transformed current response given by Eq. 24.

Firstly, di�erentiating Eq. 22 with respect to the
normalised distance variable and setting v � 0 we ob-
tain:

d �f
dv

� �
0

� ÿ ���
p
p �f v � 0� � � 1���

p
p �27�

We now use the expression presented in Eq. 26 and
noting Eqs. 23 and 27 to obtain:

ÿ�g v � 0� �
�����������
p � k

p
� ÿ ���

p
p �f v � 0� � � 1���

p
p �28�
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From Eq. 25 we immediately modify Eq. 28 to read:

K �f v � 0� �
�����������
p � k

p
� ÿ ���

p
p �f v � 0� � � 1���

p
p �29�

The latter expression only involves �f v � 0� � and can be
readily solved for the latter quantity to obtain:

�f v � 0� � � 1���
p
p ���

p
p � K

�����������
p � k

p� 	 �30�

Noting Eq. 25 we immediately obtain that:

�g v � 0� � � ÿ K���
p
p ���

p
p � K

�����������
p � k

p� 	 �31�

Finally, from Eq. 24 we obtain the detailed expression
for the normalised current response to the potential step
expressed in Laplace space:

�w � d�g
dv

� �
0

� ÿ
�����������
p � k

p
�g v � 0� � � K

�����������
p � k

p���
p
p ���

p
p � K

�����������
p � k

p� 	
�32�

As outlined in Appendix B, we can show that the nor-
malised chronoamperometric current response is given
by:

w s� � � 1�����
ps
p ÿ 1

1ÿ K2

�
�

1�����
ps
p � ���

c
p

exp�cs� erf �����
cs
p� � ÿ K exp�ÿks������

ps
p

ÿ K
�����������
k� c

p
exp�cs� erf�

�����������������
k� c� � s

p
�
�
�33�

where we have de®ned the factor c as:

c � K2k
1ÿ K2

�34�

or in more complete terms the normalised current re-
sponse pro®le is given by:

w s� � � 1�����
ps
p 1ÿ 1

1ÿ K2
1ÿ K exp�ÿks� �

� �
ÿ 1

1ÿ K2

� K

��������������
k

1ÿ K2

r
exp

K2ks
1ÿ K2

� �
erf K

��������������
ks

1ÿ K2

r" #(

ÿ K

��������������������������������
k 1� K2

1ÿ K2

� �s
exp

K2ks
1ÿ K2

� �

� erf

�����������������������������������
k 1� K2

1ÿ K2

� �
s

s" #)
�35�

This is our ®nal result, which turns out, of course,
to have quite a complex mathematical form. The latter
result is valid for K2k=�1ÿ K2� > 0 and k 1� �K2=

�
�1ÿ K2��g > 0. The latter inequalities mean that the
solution presented in Eq. 35 will be valid only for K < 1.

This is gratifying since in our experimental work we deal
with the dissociation of weak acids where K will indeed
be quite small in magnitude. Clearly, a di�erent ana-
lytical development is necessary if the situation of K > 1
is to be considered.

Limiting approximate expressions
for the transient current response

We are now in a position to examine various limiting
approximations to the general current response expres-
sion presented in Eq. 35. We note that the current re-
sponse w is a function of the equilibrium constant K and
the competition parameter k, and we note the general
restriction that K must be less than unity, although k can
have any value so long as it is positive. If the kinetics of
the homogeneous A/B interconversion process are very
slow then we set k! 0 and so K2k=�1ÿ K2� ! 0. In
such a situation, Eq. 35 reduces to:

w s� � ÿ!k!0
1ÿ 1

1ÿ K2
1ÿ K� �

� �
1�����
ps
p � K

1� K

� �
1�����
ps
p

�36�
The latter expression is not unlike the chronoampero-
metric response expected for a simple rapid electron
transfer process in the absence of a preceding homoge-
neous chemical reaction (the well-known Cottrell equa-
tion). In the latter case the expected transient current
response is:

/ � 1�����
ps
p �37�

We outline this response in Fig. 2, here we have used
Mathematica v.3.0 (Wolfram Research) to evaluate Eq.
36 for values of the equilibrium constant in the range
10ÿ4 < K < 0:1 and for s values between 0 and 1.

Hence Eq. 36 describes a modi®ed di�usion (MD)
limiting case, since the normalised current response can
be written as:

w � K
1� K

� �
/ �38�

and the simple current transient response expected for a
di�usion controlled, rapid electron transfer process is
modi®ed by a simple pre-factor containing the equilib-
rium constant K.

We note that at any given value of the normalised
time s the current response increases with increasing
value of the equilibrium constant K. It should also be
noted that we have chosen the initial value of the time
s as 10ÿ4 since the current function increases to in-
®nity as s! 0 owing to the presence of the inverse
square root term in the current expression given in
Eq. 36.

We now consider the opposite situation where the
competition parameter k is very large. This limiting case
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is of considerable signi®cance since we can extract in-
formation on the kinetics of the homogeneous chemical
reaction if the chemical system exhibits a competition
parameter value within the correct range.

To make the algebraic analysis simpler we return to
Eq. 33 and see how the latter expression may be sim-
pli®ed. We examine the situation when k is large and
when K � 1. Under such circumstances we note that
exp�ÿks� ! 0;K2 � 1, c � K2k; k� c � k 1� K2

ÿ � � k
and

���
c
p � K

�����������
c� k
p

. Keeping the latter approximations
in mind, then Eq. 33 reduces to:

w s� � � ���
c
p

exp cs� � erf
�����������������
c� k� �s

ph i
ÿ ���

c
p

exp cs� � erf �����
cs
p� �

� K
���
k
p

exp K2ks
� �

erf
�����
ks
ph i

ÿ erf K
�����
ks
ph in o

�39�

Now Eq. 39 may be simpli®ed still further if we note the
following identity:

erf x� � � 1ÿ exp ÿx2
� ����
p
p

x

� 1ÿ 1

2x2
� 1 � 3

2x2� �2
ÿ 1 � 3 � 5

2x2� �3
� � � �

( )
�40�

When the argument x is large then exp�ÿx2� ! 0 and so,
for large x; erf�x� ! 1. Hence for

�����
ks
p

large;
erf

�����
ks
ph i

! 1. Note, however, that the quantity K
�����
ks
p

is
not necessarily large since K is � 1. Hence Eq. 39 re-
duces to the simpler form:

w s� � � K
���
k
p

exp K2ks
� �

1ÿ erf K
�����
ks
ph in o

� K
���
k
p

exp K2ks
� �

erfc K
�����
ks
ph i

�41�

This expression de®nes the intermediate kinetic (KI)
case. If we let Z � K2k, then Eq. 41 takes the form:

w s� � �
���
Z
p

exp Zs� � erfc
������
Zs
ph i

�42�

We outline the latter expression in 3D format in Fig. 3.
We note from the plot that the normalised current
decays in a regular manner with increasing normalised
time. This is due to the fact that the function exp�Zs�
increases very rapidly, whereas the function erfc� ������Zs

p �
su�ers a dramatic decrease, as both Z and s increase.
This property is useful experimentally since it enables
one to measure accurately the current/time response
pro®le over a convenient time window. Equation 42 has
been quoted (without detailed proof) in the literature.

We now examine various limiting forms of Eq. 42. If
we now perform a power series expansion as follows:

exp Y 2
� �

erfc Y� � � 1� Y 2 � Y 4

2!
� Y 6

3!
� � � �

� �
� 1ÿ 2���

p
p Y ÿ Y 3

3
� Y 5

5: 2!
ÿ � � �

� �� �
�43�

where Y � ������
Zs
p

and assume that when the normalised
time s is small we can neglect all powers of the parameter
Y larger than the ®rst, we obtain the particularly simple
result that:

exp Y 2
� �

erfc Y� � � 1ÿ 2Y���
p
p �44�

Substituting this result into Eq. 43 for the normalised
current response we get:

Fig. 2 Three-dimensional surface plot computed using Mathematica
(version 3) illustrating the variation of normalised chronoampero-
metric current w with normalised time s for various values of the
equilibrium constant K. The plot represents Eq. 36, the situation of
modi®ed di�usion (MD)

Fig. 3 Three-dimensional surface plot computed using Mathematica
(version 3) illustrating the variation of normalised chronoampero-
metric current w with normalised time s for various values of the
kinetic parameter Z. The plot represents Eq. 42, the situation of
intermediate kinetics (KI) where both di�usion and homogeneous
chemical kinetics are equally important
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w � K
���
k
p

1ÿ 2K
�����
ks
p���
p
p

( )
�45�

Hence when s � 0 we are left with the following ex-
pression for the normalised current at zero time:

w s � 0� � � K
���
k
p

�46�
We recall that in PSCA we have:

w � i
���
#
p

nFAcRD1=2
k � k# �47�

Substituting Eq. 47 into Eq. 46 results in the following:

i t � 0� � � nFAcRK
������
kD
p

�48�
We note immediately that the expression presented in
Eq. 48 can be used to obtain an accurate estimate of the
kinetically signi®cant product Kk via analysis of the
experimental current/time transient response curve.
Note that:

i t � 0� � � nFAcRK
������
kD
p

� nFAcR

������������
K2kD
p

� nFAcR

����
D
p

����������������������������
k21
k2ÿ1

k1 � kÿ1� �
s( )

� nFAcR

����
D
p

������������������������������������������
k1

kÿ1
k1

kÿ1
k1 � kÿ1� �

� �s( )

� nFAcR

����
D
p ��������������������������

K k1 1� K� �� �
pn o

� nFAcR

����
D
p ��������

Kk1
p

�49�
since we assume that K � 1.

What happens when Y is large? In such a situation we
can show that:

exp Y 2
� �

erfc Y� � � 1

Y
���
p
p 1ÿ 1

2Y 2

� �
� 1

Y
���
p
p � 1

K
��������
pks
p �50�

and so the normalised current response is given by:

w s� � � K
���
k
p 1�������������

K2pks
p
� �

� 1�����
ps
p �51�

and we expect that the normalised current response
should vary inversely in a linear manner with the square
root of the normalised time. In fact Eq. 51 represents the
normalised current response expected for a fast electron
transfer reaction in the absence of any complicating
homogeneous kinetic factors. Hence we conclude that at
long times the current response re¯ects that of simple
di�usion control involving Nernstian electron transfer at
the electrode/solution interface. Note that no kinetic or
thermodynamic information can be extracted from the
current transient recorded at long times.

Table 2 Approximate expressions for the normalised current response obtained under chronoamperometric conditions

Case Conditions Normalised current

G K � 1, all k values
with k positive.

K2k
1ÿ K2

> 0 and

k 1� K2

1ÿ K2

� �
> 0

w s� � � 1�����
ps
p 1ÿ 1

1ÿ K2
1ÿ K exp�ÿks� �

� �

ÿ 1

1ÿ K2

K
���������

k
1ÿK2

q
exp K2ks

1ÿK2

h i
erf K

���������
ks

1ÿK2

qh i
ÿK

������������������������
k 1� K2

1ÿK2

ÿ �q
exp K2ks

1ÿK2

h i
erf

���������������������������
k 1� K2

1ÿK2

ÿ �
s

qh i
8>><>>:

9>>=>>;
DM
Rate control via di�usion but
modi®ed by homogeneous
chemical kinetics

K � 1 and k! 0
all s values w s� � � K

1� K

� �
1�����
ps
p

KI
Joint rate control by
di�usion and homogeneous
chemical kinetics

k large, K � 1
all s values

w s� � � K
���
k
p

exp K2ks
� �

1ÿ erf K
�����
ks
ph in o

� K
���
k
p

exp K2ks
� �

erfc K
�����
ks
ph i

KP k large, K � 1
w � K

���
k
p

1ÿ 2K
�����
ks
p���
p
p

( )
Rate control via homogeneous
chemical kinetics

K
�����
ks
p � 1

No in¯uence of di�usion s.small

DP k large, K � 1
w s� � � 1�����

ps
p

Rate control via simple
di�usion

K
�����
ks
p � 1

No in¯uence of homogeneous
chemical kinetics

s large

222



We provide a summary of the approximate forms of
the normalised transient current response to a large
amplitude potential step in Table 2.

Rotating disc voltammetry

Statement of the boundary value problem
in terms of non-dimensional variables

A characteristic of RDV is that the governing reaction/
di�usion equations do not depend on the time variable.
For a CE reaction we use the equations presented in Eq.
1, but set the derivatives with respect to time at zero.
Hence we obtain:

D
o2a
ox2
ÿ kÿ1 Kaÿ b� � � 0

D
o2b
ox2
� kÿ1 Kaÿ b� � � 0

�52�

We now de®ne the following non-dimensional variables:

u � a
cR

v � b
cR

cR � a1 � b1

v � x
d

k � kd2

D

���
k
p
� d

����
k
D

r
� d

l
�53�

k � k1 � kÿ1 l �
����
D
k

r
where d denotes the Nernst di�usion layer thickness and
represents the reaction layer thickness. Hence for RDV
the square root of the competition parameter is simply
the ratio of di�usion to reaction layer thickness.

As before, the current response is given by:

i � nFA
ob
ox

� �
0

�54�

and we can de®ne the normalised current response as:

w � id
nFADcR

�55�

Again we can show that:

o2u
ov2
� k
1� K

vÿ Ku� � � 0 �56�

and

o2v
ov2
ÿ k
1� K

vÿ Ku� � � 0 �57�

Following on from our PSCA analysis we introduce the
new auxiliary variables:

f � u� v

g � vÿ Ku �58�
and we ®nd that Eqs. 56 and 57 reduce to:

o2f
ov2
� 0

o2g
ov2
ÿ k g � 0

�59�

Clearly the latter expressions are much simpler than the
corresponding time dependent expressions used when we
analysed the PSCA response.

We now introduce the boundary conditions govern-
ing the problem. Proceeding along similar lines to those
presented for the analysis of the PSCA response, we can
show that:

v � 1 g � 0 f � 1

df
dv

� �
0

� dg
dv

� �
0

g v � 0� � � ÿKf v � 0� � �60�
We now indicate how the latter boundary value problem
may be solved.

Solution of the boundary value problem

The reaction/di�usion equations presented in Eq. 59
may be readily integrated. Solving the second equation
presented in Eq. 59 we obtain:

g v� � � A0 cosh
���
k
p

v
h i

� B0 sinh
���
k
p

v
h i

�61�

and:

dg
dv
�

���
k
p

A0 sinh
���
k
p

v
h i

�
���
k
p

B0 cosh
���
k
p

v
h i

�62�

Since g � 0 when v � 1 we obtain:

A0 � ÿB0 tanh
���
k
ph i

�63�

Also when v � 0; g � g�v � 0� and so:

g v � 0� � � A0 � ÿB0 tanh
���
k
ph i

B0 � ÿg v � 0� � coth
���
k
ph i

�64�

Substituting the latter result into Eq. 61 we obtain:

g v� � � g v � 0� � cosh
���
k
p

v
h i

ÿ sinh
���
k
p

v
h i

coth
���
k
ph in o
�65�

Also from Eq. 62 we obtain that:

dg
dv

� �
0

� ÿ
���
k
p

g v � 0� � coth
���
k
ph i

�66�

and the normalised current response is given by:

w � dg
dv

� �
0

� ÿ
���
k
p

g v � 0� � coth
���
k
ph i

�67�
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Hence the problem reduces to evaluating the unknown
quantity g�v � 0�. To do this we examine the solution of
the f expression outlined in Eq. 59. Integrating the latter
expression twice produces:

f v� � � Av� B �68�
Since we note that f � 1 when v � 1, we have A� B � 1
and so A � 1ÿ B. Also when v � 0; f � f�v � 0� and so
B � f�v � 0�. Hence we can conclude that
A � 1ÿ f�v � 0�. Thus:
f v� � � v� f v � 0� � 1ÿ vf g
df
dv

� �
0

� 1ÿ f v � 0� � �69�

From the latter expression we note that:

f v � 0� � � 1ÿ df
dv

� �
0

� 1ÿ dg
dv

� �
0

�70�

Also we recall:

g v � 0� � � ÿKf v � 0� � � ÿK 1ÿ dg
dv

� �
0

� �
� ÿK 1ÿ wf g �71�

We now substitute the result obtained in Eq. 71 into Eq.
67 and obtain:

w � ÿ
���
k
p

Kwÿ Kf g coth
���
k
ph i

�72�

The latter expression may be readily simpli®ed to:

w �
K
���
k
p

coth
���
k
ph i

1� K
���
k
p

coth
���
k
ph i � K

���
k
p

K
���
k
p � tanh

���
k
ph i �73�

The last expression is the result for the normalised cur-
rent response expected for a rotating disc electrode. It
depends on the value of K, the equilibrium constant, and
on the competition parameter k. We outline in Fig. 4 a
3D plot of Eq. 73. We note that for a given value of the
equilibrium constant K, the normalised current increases
smoothly as the competition parameter k increases.

Analysis of approximate expressions
for the normalised current response

We recall from Table 1 that the competition parameter is
given by k � kd2=D � kd=kD, where k denotes the rate
constant characterising the homogeneous chemical
kinetics and kD denotes the di�usional rate constant.
We now examine some limiting cases of Eq. 73 and
derive approximate values for the normalised current
response w.

We ®rstly examine Eq. 73 under conditions where
the competition parameter is large, but not too large
�< 10�. Under such circumstances we note that
tanh� ���kp � � 1, and so the normalised current response is
given by:

w � K
���
k
p

K
���
k
p � 1

�74�

which is, as we shall now see, a mathematical signature
of mixed reaction/di�usion control (a KI kinetic case).

If we transform Eq. 74 into dimensioned variables we
obtain that:

i � nFAcRD
l
K � d

�75�

Inversion of the latter expression produces:

nFA
i
� l

cRDK
� d

cRD
�76�

We now speci®cally consider the dissociation of a weak
acid HA. In this case we can write that
K � k1=�kÿ1�Aÿ�1� and recall that k � k1 � kÿ1 � kÿ1
since we can assume that kÿ1 � k1. We also note that the
di�usion layer thickness is given by l � �������������D=k�p �������������������������������D=�k1 � kÿ1��
p � ������������������D=kÿ1�

p
. We also recall that the

di�usion layer thickness is given by d � CD1=3xÿ1=2,
where C represents the convective constant
�C � 0:643 g=q� �1=6� and x denotes the rotation speed of
the electrode. We can also assume that cR � �HA�1 since
the equilibrium concentration of protons formed via
dissociation of the acid is very small. Substituting all of

Fig. 4 Three-dimensional surface plot computed using Mathematica
(version 3) illustrating the variation of normalised current w at a
rotating disc electrode with the competition parameter k for various
values of the equilibrium constant K. The plot represents Eq. 73
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these relationships into Eq. 76 results in the Koutecky-
Levich equation which takes the following form:

nFA
i
�

���������������������������
Aÿ� �1

Dk1KA�HA�21

s
� C

D2=3�HA�1
xÿ1=2 �77�

The latter expression can be used to evaluate the acid
dissociation constant KA and the proton transfer rate
constant k1 provided that the recombination rate con-
stant is known or can be evaluated. Indeed, in the sub-
sequent paper of this series we will show how simple
conductivity measurements can be used to estimate kÿ1
in the absence of any other kinetic data.

When the product K
���
k
p � 1, then Eq. 94 reduces to:

w � K
���
k
p

K
���
k
p � 1

� K
���
k
p

K
���
k
p � 1 �78�

and the current response is under pure di�usion control.
The chemical reaction is so rapid that it does not in¯u-
ence the form of the current response. A Nernstian re-
sponse similar to that observed for a fast ET reaction in
the absence of any complicating chemical reaction will
be observed. In such a situation the A/B equilibrium lies
so far to the right that most of the material is already in
the form of the electroactive species B. Here species A is
really unimportant to the electrode process and pure
di�usion conditions (DP case) pertain. Approximate
limits de®ning this zone are K > 10 and kK > 10.

Examination of the other limiting situation is also
informative. When the competition parameter is quite
small, then the rate of the homogeneous chemical reac-
tion is considerably slower than that of matter transport
via di�usion. Hence the competition parameter k� 1.
Again the preceding chemical reaction will have little
e�ect and a di�usion controlled Nernstian response will
be found. In this case the Nernstian response will be
modi®ed by a term involving the equilibrium constant of
the preceding chemical reaction.

Hence in the limit of small k we obtain that
tanh� ���kp � � ���

k
p

, and so Eq. 73 reduces to:

w � K
���
k
p

K
���
k
p � ���

k
p � K

���
k
p���

k
p

1� Kf g �
K

1� K
� K �79�

which again is a fairly simple result. We see that the
normalised current response is similar to that for a
simple di�usion controlled process but it is modi®ed by
the equilibrium constant term K. This corresponds to the
modi®ed di�usion (DM) case. Approximate limits de-
®ning the DM zone are K < 10 < kK.

When the competition parameter is large and when
the equilibrium constant K is small so that the chemical
reaction is sluggish, then the product K

���
k
p � 1. This

de®nes the pure kinetic (KP) zone of the case diagram.
Typically for the KP case we have kK < 0:1 and k > 1.
Hence the general expression for the normalised current
response presented in Eq. 73 reduces to:

w � K
���
k
p

�80�

Useful kinetic information can be extracted from this
expression. Re-transforming Eq. 80 into a dimensional
form:

i � nFAcRK
������
kD
p

�81�
We see that the current response does not depend on
rotation speed and one can obtain an expression for the
product Kk1=2 from the latter current response. It is in-
teresting to note that the latter expression is the same as
that obtained for the chronoamperometric response at
zero time which was presented previously in Eq. 48.

The various limiting cases can be summarised in a
kinetic case diagram. We do this in Fig. 5. We also
provide, in Table 3, a summary of the approximate
equations de®ning the normalised current response ob-
served for a CE reaction when examined using rotating
disc voltammetry.

An alternative analysis of the RDV problem

The RDV response for the intermediate kinetic case (i.e.
joint rate control via homogeneous chemical reaction
and di�usional transport) may also be derived (speci®-
cally for the situation of weak acid dissociation) via a
somewhat more simple theoretical analysis which does
not directly involve solving the reaction/di�usion equa-
tions. Rather, one examines the net reaction ¯ux at
steady state directly. To do this we re-examine Fig. 1 and
formulate a kinetic model as follows.

Since the concentration of weak acid [HA] is very
much greater than the proton concentration �H��, we can
assume that the HA species supplies protons for the
subsequent electrode reaction. Hence we only consider
the di�usional transport of the weak acid species in the

Fig. 5 Kinetic case diagram illustrating four major regions of limiting
kinetic behaviour. The notation used originates with Saveant. DP pure
di�usion control, DM di�usion control but modi®ed by homogeneous
chemical reaction, KI joint rate control via homogeneous chemical
kinetics and di�usion, KP rate control via homogeneous chemical
kinetics
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di�usion layer (the latter being of thickness d). Hence the
reaction ¯ux or rate j for weak acid di�usion is given by:

j1 � DHA

d
HA� �1ÿ HA� ��

� 	 �82�

where �HA�1 represents the bulk concentration of weak
acid (valid for distances x > d) and �HA�� represents the
weak acid concentration just outside the thin reaction
layer at x � l. Also, DHA is the di�usion coe�cient of
the weak acid species.

We can derive another expression for the reaction
¯ux by considering the transport of protons across the
length of the thin reaction layer (which has thickness l).
In this case we assume that:

j2 � DH�

l
H�� ��ÿ H�� �0

� 	 �83�

where D�H denotes the di�usion coe�cient of the solva-
ted proton and �H��0 and �H��� denote the proton
concentrations at the electrode surface (at x � 0) and
just outside the reaction layer (at x � l), respectively.

Finally, we consider the surface ¯ux describing the
rate of the heterogeneous electron transfer reaction in
which H� is reduced to molecular hydrogen (the pri-
mary detection event giving rise to the observed current):

j3 � kE H�� �0 �84�
where kE is the heterogeneous electrochemical rate
constant quantifying the rate of interfacial electron
transfer. The latter quantity exhibits a marked potential
dependence which is described by the well-known But-
ler-Volmer equation:

kE � k0E exp ÿ
aFE
RT

� �
�85�

where k0E represents a potential independent rate con-
stant, a is the transfer coe�cient, E denotes the electrode

potential and R; F and T represent the gas constant,
Faraday constant and temperature, respectively.

Under steady state conditions the net reaction ¯ux j is
given by:

j � j1 � j2 � j3 �86�
Since the bulk acid concentration is known and �HA��,�H��� and �H��0 are unknown quantities, we must ma-
nipulate the ¯ux expressions presented in Eqs. 82±84 to
eliminate the latter concentration parameters. The al-
gebra involved is rather tedious and is left to Appendix
C. There we show that:

1

j
� nFA

i
� 1

kD HA� �1
� 1

kC HA� �1
� Aÿ� �1

KAkE HA� �1
�87�

Note that in our analysis we have e�ected a clean sep-
aration between the various rate limiting factors of dif-
fusion, homogeneous chemical reaction and
heterogeneous electron transfer kinetics, represented by
the ®rst, second and third terms on the rhs of Eq. 87.
Note also that the following characteristic rate constants
have been introduced:

kD � DHA

d

kC �
�������������������
DH�k1KA

Aÿ� �1

s �88�

where kD denotes the di�usional rate constant for weak
acid transport through the di�usion layer and kC is a
homogeneous rate constant relating the transport of the
solvated proton to the electrode surface to the homo-
geneous proton transfer/reprotonation kinetics within
the reaction layer.

For the condition of large applied potentials the
heterogeneous electrochemical rate constant becomes
very large indeed. Hence if experimental conditions are

Table 3 Approximate expres-
sions for the normalised current
response obtained under rotat-
ing disc voltammetry conditions

Case Conditions Normalised current

G All K values, k > 0

w �
K

���
k
p

coth
���
k
ph i

1� K
���
k
p

coth
���
k
ph i

� K
���
k
p

K
���
k
p � tanh

���
k
ph i

KI
Joint rate control via di�usion
and homogeneous chemical reaction

k large but not too large

tanh
���
k
ph i

� 1
w � K

���
k
p

K
���
k
p � 1

DP
Di�usion control, very rapid
homogeneous kinetics

k large

K
���
k
p � 1

w � 1

DM
Di�usion control but rate in¯uenced
by homogeneous chemical reaction

k small

tanh
���
k
ph i

� ���
k
p W � K

1� K

KP
Rate control via homogeneous
chemical kinetics

k large

K
���
k
p � 1

w � K
���
k
p
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®xed so that the applied potential is large enough such
that every H� species arriving at the electrode surface is
immediately reduced to H2 (i.e. the surface concentra-
tion of H� is zero), then we can neglect the third term on
the rhs of Eq. 87 and obtain:

1

jL
� nFA

iL
� 1

kD HA� �1
� 1

kC HA� �1
�89�

Now the thickness d of the di�usion layer may be cal-
culated exactly for a rotating disc electrode system. It is
a well-characterised function of electrode rotation
speed. The faster the rotation speed, the thinner the
di�usion layer thickness and the greater the di�usional
¯ux towards the electrode surface. Levich [25] has
shown that:

d � 0:643
g
q

� �1=6

D1=3
HAxÿ1=2 �90�

where g is the viscosity of the solvent, q is the density of
the solvent and x represents the electrode rotation speed
(in Hz). Using the de®nition of kD and kC presented in
Eq. 88 we can show that Eq. 89 may be written in the
following form:

nFA
iL
� SKLxÿ1=2 � IKL �91�

This is the Koutecky-Levich equation for a CE process,
and implies that a plot of inverse limiting current versus
inverse square root of rotation speed should be linear
with a slope SKL and intercept IKL given by:

SKL � 0:643
g
q

� �1=6

Dÿ2=3HA HA� �ÿ11

IKL � 1

kC HA� �1
�

���������������������������������
Aÿ� �1

DH�k1KA HA� �21

s �92�

It should be noted that Eq. 91 is exactly the same form
as that previously derived in Eq. 77 from more general
considerations, and that the limiting KP expression for
the RDV current response presented in Eq. 81 can, after
trivial manipulation, be transformed into the expression
for the Koutecky-Levich intercept IKL presented above
in Eq. 92. Hence the two approaches are complemen-
tary.

Concluding comments

In the present paper we have presented a detailed anal-
ysis of kinetic methodologies based on steady state
(RDV) and transient (PSCA) electrochemical techniques
which can be used to probe the proton transfer and re-
combination kinetics of potential electrolytes. A coher-
ent theoretical kinetic analysis has been presented and
key theoretical predictions arising from the latter anal-
ysis have been outlined.

Appendix A

In this appendix we ®rstly indicate how the reaction di�usion
equations presented in Eq. 9 of the text are obtained starting with
Eqs. 6±8.

The most e�ective way to proceed is to express the boundary
value problem in terms of non-dimensional variables. To do this we
de®ne:

u � a
cR

v � b
cR

cR � a1 � b1

v � x�������
D#
p s � t

#
k � k# k � k1 � kÿ1 �A1�

where # represents the total measurement time and k is the com-
petition parameter de®ned in Table 1 of the text. Substituting Eq.
A1 into Eq. 2 of the text we obtain for the expression involving
species A:

cR

#

ou
os
� DcR

D#
o2u
ov2
� kÿ1cRvÿ k1cRu

ou
os
� o2u

ov2
� kÿ1#vÿ k1#u �A2�

But we recall that k1 � Kkÿ1 and so:

ou
os
� o2u

ov2
� kÿ1#vÿ k1#u

� o2u
ov2
� kÿ1# vÿ Ku� � �A3�

We now introduce the competition parameter:

k � k# � k1 � kÿ1� �# K � k1
kÿ1

k
1� K

� k1 � kÿ1� �#
1� k1

kÿ1

� k1 � kÿ1� �# kÿ1
k1 � kÿ1

� kÿ1# �A4�

Substituting the result presented in Eq. A4 into Eq. A3 we ob-
tain:

ou
os
� o2u

ov2
� k
1� K

vÿ Ku� � �A5�

Using a similar method of analysis we can show that:

ov
os
� o2v

ov2
ÿ k
1� K

vÿ Ku� � �A6�

Hence Eqs. A5 and A6 represent the de®ning reaction/di�usion
equations cast in non-dimensional form. We note that these ex-
pressions are still rather complex since they involve both u and v.
To make matters simpler we introduce two new non-dimensional
variables f and g which we de®ne as:

f � u� v

g � vÿ Ku
�A7�

If the latter quantities are substituted into Eqs. A5 and A6 a more
mathematically transparent set of di�erential equations is obtained.
Using the ®rst relation in Eq. A7 we obtain:

of
os
� ou

os
� ov

os
� o2u

ov2
� k
1� K

vÿ Ku� � � o2v
ov2
ÿ k
1� K

vÿ Ku� �

� o2u
ov2
� o2v

ov2
� o2

ov2
u� vf g � o2f

ov2
�A8�

The second expression in Eq. A7 produces:
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og
os
� ov

os
ÿ K

ou
os
� o2v

ov2
ÿ k
1� K

vÿ Ku� � ÿ K
o2u
ov2
ÿ k K
1� K

vÿ Ku� �

� o2

ov2
vÿ Kuf g ÿ k 1� K� �

1� K
vÿ Ku� � �A9�

og
os
� o2g

ov2
ÿ k g

Hence we note that our system of reaction/di�usion equations re-
duces to the following simple expressions:

of
os
� o2f

ov2

og
os
� o2g

ov2
ÿ k g �A10�

which is Eq. 9 presented in the paper.
Equations 10±12 in the paper may be derived as follows. We

®rst consider the initial condition.

s � 0 v � 0 a! a1 b! b1 :

u � a
cR
� a

a1 � b1
� a1

a1 � b1

� 1

1� b1
a1
� 1

1� K

v � b
cR
� b

a1 � b1
� b1

a1 � b1
�A11�

� b1=a1

1� b1
a1
� K

1� K

f � u� v � 1

1� K
� K
1� K

� 1� K
1� K

� 1

g � vÿ Ku � K
1� K

ÿ K
1� K

� 0

Consequentially we note that:

s � 0 v � 0 : f � 1 g � 0 �A12�
This is Eq. 10 of the paper.

Taking the boundary condition very far from the electrode
surface we recall that:

s > 0 v!1 a! a1 b! b1

u! 1

1� K
v! K

1� K
�A13�

f � u� v! 1

g � vÿ Ku! 0

Finally, we consider the boundary condition at the electrode sur-
face. Here we recall that:

s > 0 v � 0 : b � 0 D
oa
ox

� �
0

� 0

v � 0
ou
ov

� �
0

� 0

of
ov

� �
0

� ou
ov

� �
0

� ov
ov

� �
0

� ov
ov

� �
0

g � vÿ Ku � ÿKu

f � u� v � u

g v � 0� � � ÿKf v � 0� � �A14�
og
ov

� �
0

� ov
ov

� �
0

ÿK
ou
ov

� �
0

� ov
ov

� �
0

og
ov

� �
0

� of
ov

� �
0

We ®nally require an expression for the normalised current re-
sponse (Eq. 14 of the paper). Recall that:

i � nFAD
ob
ox

� �
0

� nFAD�������
D#
p a1 � b1� � ov

ov

� �
0

� nFAcR

����
D
p���
#
p ov

ov

� �
0

�A15�

If we introduce the normalised current response w as:

w � i
���
#
p

nFAcR

����
D
p (A16)

Then from Eqs. A15 and A16 we note that the normalised current
response is given by:

w � ov
ov

� �
0

� og
ov

� �
0

(A17)

which we required to derive.

Appendix B

In this appendix we derive Eq. 33 for the normalised chronoam-
perometric response. We begin with the expression for the nor-
malised chronoamperometric response in Laplace space, which is
given by:

�w � d�g
dv

� �
0

� ÿ
�����������
p � k

p
�g v � 0� � � K

�����������
p � k

p���
p
p ���

p
p � K

�����������
p � k

p� 	 (B1)

We now must use the inverse Laplace transformation to obtain an
expression for the normalised current response in real space. This
usually is not a trivial task. Inversion of the expression presented in
Eq. B1 may be accomplished with a little bit of ingenuity if we note
the following:

K
�����������
p � k

p���
p
p ���

p
p � K

�����������
p � k

p� 	 � ���
p
p � K

�����������
p � k

p ÿ ���
p
p���

p
p ���

p
p � K

�����������
p � k

p� 	
� 1���

p
p ÿ 1���

p
p � K

�����������
p � k

p (B2)

Hence the time dependent current response in real space is:

w s� � � Lÿ1 �w�p�� 	
� Lÿ1

1���
p
p
� �

ÿ Lÿ1
1���

p
p � K

�����������
p � k

p( )

� 1�����
ps
p ÿ Lÿ1

1���
p
p � K

�����������
p � k

p( )
(B3)

We now need to evaluate the second term on the rhs of Eq. B3. To
do this we resort to some algebra:

1���
p
p � K

�����������
p � k

p
�

���
p
p ÿ K

�����������
p � k

p���
p
p � K

�����������
p � k

pÿ � ���
p
p ÿ K

�����������
p � k

pÿ �
�

���
p
p ÿ K

�����������
p � k

p
p ÿ K2 p � k� �

�
���
p
p

p ÿ K2 p � k� � ÿ
K

�����������
p � k

p
p ÿ K2 p � k� �

�
���
p
p

p 1ÿ K2� � ÿ K2k
ÿ K

�����������
p � k

p
p 1ÿ K2� � ÿ K2k
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� 1

1ÿ K2

���
p
p

p 1ÿK2� �ÿK2k
1ÿK2

ÿ K
�����������
p � k

p
p 1ÿK2� �ÿK2k

1ÿK2

( )

� 1

1ÿ K2

���
p
p

p ÿ K2k
1ÿK2

ÿ K
�����������
p � k

p
p ÿ K2k

1ÿK2

( )
(B4)

We now let c � K2k=�1ÿ K2�. Hence Eq. B4 becomes:

1���
p
p � K

�����������
p � k

p � 1

1ÿ K2

���
p
p

p ÿ c
ÿ K

�����������
p � k

p
p ÿ c

( )
(B5)

Hence a rather di�cult inverse transform has been simpli®ed into
the di�erence of two simpler inverse transforms.

We now ®nd from the tables of inverse Laplace transforms
that2

Lÿ1
�����������
p � b

p
p � a

( )
� exp�ÿbs������

ps
p �

�����������
bÿ a

p
exp�ÿas� erf�

�����������
bÿ a

p ���
s
p � (B6)

The latter identity may be used to invert Eq. B5. Firstly, setting
b � 0 and a � ÿc in Eq. B6 we obtain:

Lÿ1
���
p
p

p ÿ c

� �
� 1�����

ps
p � ���

c
p

exp�cs�erf� �����cs
p � (B7)

Secondly, setting b � k and a � ÿc in Eq. 49 we ®nd that:

Lÿ1
�����������
p � k

p
p ÿ c

( )
� exp�ÿks������

ps
p �

�����������
k� c

p
exp�cs� erf

�����������������
k� c� � s

ph i
(B8)

We now gather together the results presented in Eqs. B7 and B8
and substitute these into Eq. B3 to obtain an analytical expression
for the normalised time dependent current response to a potential
step perturbation:

w s� � � 1�����
ps
p ÿ 1

1ÿ K2

1�����
ps
p
�

� ���
c
p

exp�cs� erf� �����cs
p � ÿ K exp�ÿks������

ps
p

ÿK
�����������
k� c

p
exp�cs� erf�

�����������������
k� c� � s

p
�
o

(B9)

This is Eq. 33 presented in the text as required.

Appendix C

In this appendix we show in detail how the ¯ux expressions pre-
sented in Eqs. 82±84 of the paper can be manipulated to produce
Eq. 87. Firstly, starting with Eq. 82, we note:

j1 � DHA

d
HA� �1ÿ HA� ��

� 	
(C1)

Since steady state conditions are assumed, then each sequential step
is kinetically balanced and j1 � j. Also setting kD � DHA=d, where
kD is the di�usional rate constant, then Eq. C1 reduces to:

HA� ��� HA� �1ÿ
j

kD
(C2)

For regions outside the reaction layer the proton transfer reaction
is in balance and we can write that KA � [H��� Aÿ� �1= HA� ��. We
can therefore obtain the following useful result:

H�� ���
KA HA� ��
Aÿ� �1

(C3)

where we have assumed that the anion concentration does not vary
with distance from the electrode and so the anion concentration
just outside the reaction layer is equal to the bulk anion concen-
tration.

We note that:

j � DH�

l
H�� ��ÿ H�� �0

� 	
(C4)

and substituting Eq. C3 into Eq. C4 yields:

j � DH�

l
KA

Aÿ� �1
HA� ��ÿ H�� �0

� �
(C5)

We also note that:

j � kE H�� �0 (C6)

We now substitute Eq. C3 into Eq. C5 to obtain:

j � DH�KA

l Aÿ� �1
HA� �1ÿ

j
kD

� �
ÿ DH�

l
H�� �0 (C7)

The latter expression may be rearranged to obtain an expression for
the surface concentration of protons at the electrode/solution in-
terface:

H�� �0�
KA HA� �1

Aÿ� �1
ÿ jl

DH�
1� DH�KA

kDl Aÿ� �1

� �
(C8)

We now substitute Eq. C8 into Eq. C6 to obtain:

j � kE KA HA� �1
Aÿ� �1

ÿ j l kE
DH�

1� DH�KA

kDl Aÿ� �1

� �
(C9)

We now rearrange this expression to obtain the following equation
for the reaction ¯ux j at steady state:

j � kEKA HA� �1
�
Aÿ� �1

1� kEl
DH�
� kEKA

kD A
ÿ� �1

� kE HA� �1
A
ÿ� �1

KA
� kEl A

ÿ� �1
DH� KA

� kE
kD

(C10)

The latter expression may be used to compute the theoretical cur-
rent potential response if so desired. A more transparent method of
attack is to invert Eq. C10 to obtain:

1

j
� Aÿ� �1

KA
� kEl Aÿ� �1

DH�KA
� kE

kD

� �
1

kE HA� �1
(C11)

We now consider the factor kEl Aÿ� �1=DH�KA. We need to intro-
duce the de®nition of reaction layer thickness as follows:

l �
�������������������

DH�

kÿ1 Aÿ� �1

s
(C12)

Hence we note that kEl Aÿ� �1=DH�KA =
�������������������������������
DH�=kÿ1 Aÿ� �1

p
kE Aÿ� �1=DH�KA

� 	
=

�����������������������������������
Aÿ� �1=k1KADH�

p
kE = kE=kC. In the latter

sequence of manipulations we have assumed that KA � k1=kÿ1 and
introduced the homogeneous rate constant kc as follows:

kC �
�������������������
DH�k1KA

Aÿ� �1

s
�

��������������������
DH�k21

kÿ1 Aÿ� �1

s
� k1

��������������������
DH�

kÿ1 Aÿ� �1

s
� k1l (C13)

Introducing the kc parameter into Eq. C11 and simplifying results
in the following expression for the inverse reaction ¯ux:

1

j
� nFA

i
� 1

kD HA� �1
� 1

kC HA� �1
� Aÿ� �1

KAkE HA� �1
(C14)

which is the Koutecky-Levich equation presented in Eq. 87 in the
paper.

2 Note that the error function is de®ned as:

erf x� � � 2���
p
p
Zx

0

exp ÿy2
� �

dy

� 2���
p
p xÿ x3

3
� x5

10
ÿ � � �

� �
� x���

p
p
X1
j�0

ÿx2
ÿ �j

j! j� 1
2

ÿ �
where the in®nite series expansion is useful in evaluating the
function via computer!
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